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Abstract
We develop a semiclassical approximation for the scar function in the Weyl–
Wigner representation in the neighborhood of a classically unstable periodic
orbit of chaotic two-dimensional systems. The prediction of hyperbolic fringes,
asymptotic to the stable and unstable manifolds, is verified computationally
for a (linear) cat map, after the theory is adapted to a discrete phase
space appropriate to a quantized torus. Characteristic fringe patterns can
be distinguished even for quasi-energies where the fixed point is not Bohr-
quantized. Also the patterns are highly localized in the neighborhood of the
periodic orbit and along its stable and unstable manifolds without any long
distance patterns that appear for the case of the spectral Wigner function.

PACS numbers: 03.65.Sq, 05.45.Mt

1. Introduction

The Gutzwiller trace formula provides a tool for the semiclassical evaluation of the energy
spectrum in terms of the periodic orbits of the system. However, the number of long
periodic orbits required to resolve the spectrum increases exponentially with the Heisenberg
time TH [1].

The semiclassical theory of short periodic orbits developed by Vergini and co-workers
[2–7] is a formalism that allows us to obtain all the quantum information of a chaotic
Hamiltonian system in terms of a very small number of short periodic orbits. In this context, the
scar functions play a crucial role. These wavefunctions, that have been introduced in several
previous works [7–12], live in the neighborhood of the classical trajectories, resembling the
hyperbolic structure of the phase space in their immediate vicinity. This property makes
them extremely suitable for investigating chaotic eigenfunctions. Recently, it has been shown
that the matrix elements between scar functions provide information about the heteroclinic
classical structure [6, 7].
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In order to perform further developments to this semiclassical theory of short periodic
orbits, it is important to provide a general expression in phase space for the scar functions
explicitly in terms of the classical invariants that generates the dynamics of the system. This
is the purpose of this paper. In this context, the choice of the Weyl–Wigner representation
provides a phase space vision which best allows a quantum classical comparison [13]. Also,
for two degrees of freedom Hamiltonian systems the dynamics is studied entirely within a
surface of section transversal to the periodic orbit. That is, the full dynamics is studied through
a two-dimensional section map.

The semiclassical expression here deduced predicts characteristic hyperbolic patterns
located in the neighborhood of the periodic orbits and along its stable and unstable manifolds.
To show the validity of our approximation, we compare the general expression here founded
with a ‘realistic’ system, the cat map, i.e. the quantization of linear symplectic maps on the
torus. As was shown by Keating [23] in this case the semiclassical theory is exact, making
these maps an ideal probe for our expression. After the formalism is adapted for a torus
phase space, we see an important agreement between the semiclassical construction and the
numerically computed Wigner scar functions for the cat maps. The characteristic hyperbolic
patterns are clearly discernible even for non-Bohr-quantized values of the classical action.

Although most studies in phase space have adopted the Husimi representation [9, 12]
this must be interpreted as a Gaussian smoothing of the Wigner function in an area of size
h̄ that usually dampens the fine structure extending along the stable and unstable manifolds
[13]. This work is a first step to further objectives that includes the investigation of the matrix
elements between scar functions.

Section 2 deals with the definition of scar functions and develops its relationship with
the spectral operator. Then, the Weyl–Wigner representation of the scar function, here called
the scar Wigner function, is studied. Mainly, its local hyperbolic form in the neighborhood
of a single periodic orbit is obtained only in terms of classical objects. Also, this expression
is compared to the already studied spectral Wigner function [14]. Although the formalism is
valid for an autonomous Hamiltonian flux, we restrict the treatment to a surface of section
transversal to the periodic orbit, in this way the flux is converted in a map on the section.

Section 3 is devoted to study the particular case of the cat map where not only the
semiclassical theory is exact but also the linear approximation is valid throughout the torus.
The scar Wigner function is then clearly visualized as a hyperbolic fringe pattern that is in
agreement with the semiclassical expression derived in section 2. It has to be noted that we
here choose values of N, the dimension of the Hilbert space, such that the spectrum of the
cat map presents no degeneracies. In that case, the scar states are not the eigenfunctions of
the propagator as Faure et al [12] show it happens. Also the fringe patterns here analyzed lie
entirely within the scope of standard semiclassical theory, restricted to fairly short times. The
interesting question concerning homoclinic recurrences depends on dynamics for longer times.

2. Scar Wigner functions

Scar function states are the main object of study of the current work. According to [7–12],
the scar function |ϕX,φ〉 of parameter φ constructed on a single periodic point X = (P,Q) is
defined as

|ϕX,φ〉 =
∫ ∞

−∞
dt eiφtfT (t)Û t |X〉 (1)

where T = ln h̄ is the Ehrenfest time, |X〉 is a coherent state centered in the point X on
the periodic orbit and Û t is the unitary propagator that governs the quantum evolution of
the system. While fT (t) is a decaying function that takes negligible values for |t | > T/2.
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In [12], the function fT (t) = I[−T/2,T /2](t) that is simply the step function on the interval
[−T/2, T /2]. While in [7] a cosine term is added in order to minimize the energy spreading,
so that fT (t) = I[−T/2,T /2](t) cos

(
πt
T

)
. These wavefunctions have been shown, in the Husimi

representation, to live in the neighborhood of the trajectory, resembling the hyperbolic structure
of the phase space in their immediate vicinity [12].

It will be convenient for our purpose to choose fT (t) = e−( 4t
T )

2

, that is the scar function
is

|ϕX,φ〉 =
∫ ∞

−∞
dt eiφt e(4t/T )2

Û t |X〉. (2)

On the other hand, the spectral operator (or energy Green function) is defined as

ĜE,ε =
∫ ∞

−∞
dt eiφt Û t e−t |ε|/h̄ (3)

with Û t = e
−i
h̄

Ĥ t and φ = E
h̄

so that

ĜE,ε = 1

πh̄

∫ ∞

−∞
dt e

i
h̄ (E−Ĥ)t e−t |ε|/h̄ = − 1

π
Im

(
1

Ĥ − E − iε

)
(4)

= 1

π

ε

(Ĥ − E)2 + ε2
≡ δε(E − Ĥ ) =

∑
n

|ψn〉〈ψn|δε(E − En) (5)

where |ψn〉 are the Hamiltonian eigenfunctions with energy En and δε(x) is a normalized
function whose width ε can be taken to be arbitrary small, so that δε tend to the Dirac δ

function as ε → 0. Then ĜE,ε is not a pure state but a statistical mixture. In the limit ε → 0,
the spectral operator is a comb of delta functions on the eigenangles, whose amplitudes are the
corresponding individual density matrices |ψn〉〈ψn|. For values of ε larger than the mean level
spacing, several eigenstates contribute to the spectral operator in a Lorentzian-like smoothing
of energy width ε.

As we mentioned earlier, for the function fT (t) in (1) we can choose any damping term
with characteristic time T as, for example, e− t |ε|

h̄ with ε ≈ h̄/T . So that, it is possible to
establish a relationship of the scar functions with the spectral operator

|ϕX,φ〉 ∼= Ĝh̄φ,h̄/T |X〉, (6)

that is the scar function is the spectral operator acting on the coherent state centered at the
point X on the periodic orbit.

The purpose of this work is to study the scar function in phase space by means of the
Weyl–Wigner representation ρ

X,φ
(x), here called the scar Wigner function,

ρX,φ(x) = tr[R̂xρ̂X,φ] (7)

where ρ̂X,φ ≡ |ϕX,φ〉〈ϕX,φ| is the density matrix of the scar function and R̂x are the set of
reflection operators through the points x = (p, q) in phase space [15, 16]. The Weyl–Wigner
representation, defined through the set of reflection operators (see the appendix), has the
advantage to show structures of size lower than h̄ [17] while the Husimi representation is a
Gaussian smoothing on a region of size h̄ [13, 18] and hence has a lower resolution.

For the case of the spectral operator its Wigner function

GE,ε(x) = W(E, ε, x) = tr[R̂xĜE,ε] (8)

known as the spectral Wigner function, originally introduced by Berry [19], has been recently
shown to present important scarring features [14] some of which would be present in the scar
Wigner function ρ

X,φ
(x) as will be seen in this work.
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It must be noted that by construction

ρ̂X,φ ≡ |ϕX,φ〉〈ϕX,φ| (9)

is a pure state while ĜE,ε is a statistical average but both are related by

ρ̂X,φ
∼= Ĝh̄φ,h̄/T |X〉〈X|Ĝ†

h̄φ,h̄/T .

Inserting the definition of scar function (1) with (9) into (7) it can be seen that

ρX,φ(x) =
∫ ∞

−∞

∫ ∞

−∞
dt ′ dt eiφtfT (t)fT (t ′)〈X|Û−t ′R̂xÛ

t |X〉. (10)

Let us now use the decomposition of the propagator in terms of reflection operators [15]

Û t =
(

1

πh̄

)L ∫
dxUt(x)R̂x (11)

where
∫

dx is an integral over the whole phase space and L is the number of degrees of
freedom. The scar Wigner function is then expressed as

ρX,φ(x) =
(

1

πh̄

)2L ∫ ∞

−∞

∫ ∞

−∞
dt ′ dtfT (t)fT (t ′) exp[iφ(t − t ′)]

×
∫

dx1

∫
dx2U

−t ′(x2)U
t (x1)〈X|R̂x2R̂xR̂x1 |X〉. (12)

The coherent states on the points X = (p, q) in phase space are obtained by translating to X
the ground state of the harmonic oscillator, its position representation is

〈q|X〉 =
(mω

πh̄

) 1
4

exp

[
− ω

2h̄
(q − Q)2 + i

P

h̄

(
q − Q

2

)]
. (13)

For simplicity, unit frequency (ω = 1) and mass (m = 1) are chosen for the harmonic oscillator
without loss of generality. The overlap of two coherent states is then

〈X|X′〉 = exp

[
− (X − X′)2

4h̄
− i

2h̄
X ∧ X′

]
, (14)

where the wedge product

X ∧ X′ = PQ′ − QP ′ = (JX) · X′,

the second equation also defines the symplectic matrix J . As is shown in the appendix, the
action of the reflection operator R̂x on a coherent state |X〉 is the x reflected coherent state

R̂x |X〉 = exp

[
i

h̄
X ∧ x

]
|2x − X〉 (15)

and the product of three reflections also gives a reflection

R̂x2R̂xR̂x1 = exp

[
i

h̄
	3(x2, x1, x)

]
R̂xR(x2,x1,x) (16)

where

	3(x2, x1, x) = 2(x2 − x) ∧ (x1 − x) (17)

is the area of the oriented triangle whose sides are centered on the points x2, x1 and x,
respectively, while

xR(x2, x1, x) = x2 − x + x1 (18)

is the point vertex formed by the sides of the triangle centered on the points x2 and x1 (see
figure 1).
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Figure 1. In order to correctly compose the canonical transformations the end point of the orbit
γ t

1 , centered in x1, and the initial point of γ −t ′
2 , centered in x2, must coincide in xR . The resulting

classical orbit γ t−t ′ that joins the points x− and x+ and has its center point in x is the composition
of the orbits γ t

1 and γ −t ′
2 .

Performing the product (16) applied to a coherent state, as in (15), and then overlapping
with (14) it is shown that

〈X|R̂x2R̂xR̂x1 |X〉 = e
i
h̄
	3(x2,x1,x) exp −

[
(X − x2 + x − x1)

2

h̄

]
. (19)

The result (19) is inserted into (12) in order to perform the double phase space integrals

I =
(

1

πh̄

)2L ∫
dx1

∫
dx2U

−t ′(x2)U
t (x1)〈X|R̂x2R̂xR̂x1 |X〉

=
(

1

πh̄

)2L ∫
dx1

∫
dx2U

−t ′(x2)U
t (x1) e

i
h̄
	3(x2,x1,x) exp

[
− (X − x2 + x − x1)

2

h̄

]
. (20)

If the damping exponential term is omitted in (20), the double phase space integral is simply
performed using the product of symbols in phase space [15] that is

Ut−t ′(x) = Û−t ′Û t (x) =
(

1

πh̄

)2L ∫
dx1

∫
dx2U

−t ′(x2)U
t (x1) e

i
h̄
	3(x2,x1,x) (21)

but the presence of the exponential term has to be kept into account so that

I = Ut−t ′(x) exp

[
− [X − xR(x)]2

h̄

]
(22)

where now xR(x) is a point in phase space that only depends on x (and of course on the times
t and t ′) since its dependence on x1 and x2 has been integrated. Another approach to obtain
this result is to perform in (20) the semiclassical approximation for the propagator

Ut
sc(x) =

∑
γ

eiαt
γ∣∣det Mt

γ + 1
∣∣ 1

2

exp

[
i

h̄
St

γ (x)

]
(23)

where the summation is over all the classical orbits γ whose center lies on the point x after
having evolved a time t [15]. Then St

γ (x) is the classical center-generating function of the
orbit, from which the chord ξ joining the initial and final points of the orbit is obtained:

ξ = −J
∂St

γ (x)

∂x
, (24)

while Mt
γ = ∂2St

γ (x)

∂x2 stand for the monodromy matrix and αt
j its Maslov index.
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Inserting the semiclassical propagator (23) into the phase space integral (20), we get

I =
(

1

πh̄

)2L∑
γ1

∑
γ2

exp
[
i
(
αt

γ1
+ α−t ′

γ2

)] ∫ ∫
exp

[− 1
h̄
(X − x2 + x − x1)

2
]∣∣det M−t ′

γ2
+ 1
∣∣ 1

2
∣∣det Mt

γ1
+ 1
∣∣ 1

2

× exp

{
i

h̄

[
St

γ1
(x1) − St ′

γ2
(x2) + 	3(x2, x1, x)

]}
dx1 dx2, (25)

where the summations are performed over orbits γ1 and γ2 whose centers lie on the points x1

and x2 after having evolved time t and −t ′, respectively. While for the phase space integrals in
(25) we use the stationary phase approximation. That is, the term inside the integral is relevant
only in the neighborhoods of the points x1 and x2 for which the phase in the highly oscillating
term is stationary. In our case, the phase S(x2, x1, x) = St

γ1
(x1) − St ′

γ2
(x2) + 	3(x2, x1, x) is

stationary only for the points x2(x), x1(x) that fulfil simultaneously the conditions

∂S

∂x1
= ∂St

γ1

∂x1
+

∂	3

∂x1
= J ξ1 + 2J (x2 − x) = 0,

∂S

∂x2
= −∂St ′

γ2

∂x2
+

∂	3

∂x2
= −J ξ2 − 2J (x1 − x) = 0.

(26)

That is, x2(x), x1(x) must be such that the end point of the chord ξ1 = 2(x2 − x), generated
by the orbit γ t

1 , centered in x1 coincides with the initial point of the chord ξ2 = 2(x − x1),
generated by the orbit γ −t ′

2 , centered in x2. Note that the matching point is exactly x1 + ξ1

2 =
x2 − ξ2

2 = x1 + x2 − x = xR . In this way, we can compose both canonical transformations γ t
1

and γ −t ′
2 , so as to obtain the canonical transformation γ t−t ′ whose center-generating function

is

St−t ′
γ (x) = St

γ1
(x1) − St ′

γ2
(x2) + 	3(x2, x1, x) (27)

such that

ξ = −J
∂St−t ′

γ (x)

∂x
= ξ1 + ξ2.

For clarity this situation is depicted in figure 1 (see also [15]). In that figure, x− denotes the
initial point of the orbit γ t

1 , while its time t evolution

Lt (x−) = xR(x). (28)

Whereas x+ stand for a time t − t ′ evolution

L(t−t ′)(x−) = x+.

Also x is the center point of x− and x+ . That is,

x = x− + x+

2
= x− + L(t−t ′)(x−)

2
. (29)

Once the stationary phase points have been determined, the amplitude terms in the first
line in (25) must be evaluated on these stationary points, while the phase must be expanded in
there neighborhoods up to second order in x1 and x2 and then perform the resulting Gaussian
integral. Adopting this procedure it results in

I =
∑

γ

exp
(
iαt−t ′

γ

) exp i
h̄

[
St−t ′

γ (x)
]

∣∣det Mt−t ′
γ + 1

∣∣ 1
2

exp

[
− (X − xR(x))2

h̄

]
, (30)

where xR(x) = x2(x) − x + x1(x) with the points x1(x) and x2(x) fulfilling (26) so that xR(x)

corresponds to the end point of the orbit γ t
1 or to the initial point of γ −t ′

2 as shown in figure 1,
while the orbit γ t−t ′ is the composition of γ t

1 and γ −t ′
2 .
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Now the stationary-phase-integrated result (30) is inserted into the scar Wigner function
(12) to obtain its semiclassical approximation:

ρSC
X,φ(x) =

∫ ∞

−∞

∫ ∞

−∞
dt ′ dtfT (t)fT (t ′) exp[iφ(t − t ′)]

×
∑

γ

exp
(
iαt−t ′

γ

) exp i
h̄

[
St−t ′

γ (x)
]

∣∣det Mt−t ′
γ + 1

∣∣ 1
2

exp

[
− (X − xR(x))2

h̄

]
. (31)

With the choice for fT (t) made in (2) and performing the change of variables t1 = t − t ′ and
t2 = t + t ′ it is possible to separate part of the time integrals so that

ρSC
X,φ(x) = 2

∫ ∞

−∞

∑
γ

e−4t2
1 /T 2∣∣det Mt1
γ + 1

∣∣ 1
2

exp

[
i

(
1

h̄
St1

γ (x) + t1φ + αt1
γ

)]

×
∫ ∞

−∞
e−4t2

2 /T 2
exp

[
− (X − xR(x, t1, t2))

2

h̄

]
dt2

 dt1. (32)

In the last expression we have explicitly written the time dependence of the point xR . Recall
that the summation is performed over all the classical orbits γ t1 that after a time t1 have their
center point lying in the phase space point x, while xR(x, t1, t2) is the end point after the same
trajectory has spent a time t = (t1 + t2)/2.

So as to study ρSC
X,φ(x) in the neighborhood of the point X on a periodic orbit, the main

contribution in the sum over classical orbits in (32) will come from the particular orbit that lies
the closest to the periodic orbit passing through X. Other orbits contributions will be highly
damped by the exponential term involving X − xR . Then, only this particular orbit will be
taken into account.

Also, a stationary phase treatment of (32) involves a time integral in t1 with the phase

Sφ
γ (x) = St1

γ (x) + t1φ + αt1
γ . (33)

The same stationary phase treatment appears for the spectral Wigner function and has been
already studied by Berry [20] and Ozorio de Almeida [15]. In that case, stationary phase
methods show that both the energy shell and the periodic orbit are Airy caustics that separate
an oscillatory behavior from an evanescent one obtaining maximum amplitude close to the
caustic. Also, there are phase oscillations along the orbit while not on the energy shell.
In addition, for the case here studied (32) the damping term in X − xR(x) implies that the
structure of the scar function is highly localized in the neighborhood of the periodic orbit
passing through X. That is, on the Airy caustic.

In order to study the phase space structure of the scar function where it is relevant and
to manifestly show the hyperbolic structure of the instable periodic orbit, we will study the
scar function on a surface of section that is transversal to the flux and passing through X. In
analogy with classical Poincare surfaces of section. The flux restricted to this section is now
a map on the section, for this map the time is discrete and time integrals must be replaced by
summations.

The study of autonomous fluxes through a map on surface of section is a standard
procedure, in the case of billiards this is done through the well-known Birkhoff coordinates.
Also, the quantum surface of section methods is shown to be exact [21] for general Hamiltonian
systems.

For this procedure, we can choose coordinates near the periodic orbit of period τ such
that one coordinate is the energy E and the conjugate coordinate is the time along the orbit.
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With this choice of coordinates, a point x = (x̃, t, E) with now x̃ being a (2L − 2) vector on
the so-called central surface of section [15]. In order to perform our study on this surface of
section near the periodic point X, we also linearize the flux in the neighborhood of the orbit
through X. That is, x+ = Lt1

γ (x−) ≈ Mt1
γ x−, where Mt1

γ is the symplectic matrix denoting this
linearized time evolution. As was shown in [15], in the transformation x+ = Mt1

γ x− for times
t1 that are integer multiples of τ, t1 = n1τ , the points x+ = (x̃+, t+, E+) and x− = (x̃−, t−, E−)

on the surface of section have the same energy (E+ = E−) and time along the orbit (t+ = t−)

so we can write

Mt1
γ =

mt1
γ 0

0 10
01

 (34)

with

det
[
1 + Mt1

γ

] = 4 det
[
1 + mt1

γ

]
, (35)

where mt1
γ is now the (2L − 2) × (2L − 2) symplectic matrix for the center map determined

by the orbit γ on the surface section, that is

x̃+ = mt1
γ x̃−. (36)

From now on, the 2L-dimensional autonomous flux is studied through the 2L − 2 map on the
mentioned surface of section. Also the point X on the periodic orbit of the flux is a periodic
point for the map on the section.

Let us define on the section x ′ = x̃ − X. In the same way, x̃− the initial point of the
classical orbit γ t1 can be written as x̃− = X + δ− so that its time t linearized evolution on the
section (t is again an integer multiple of τ ) is

xR = mt
γ x̃− = mt

γ (X + δ−) = X + mt
γ δ−. (37)

Note that for the fixed point mt
γ (X) = X. Also for the center point defined in (29)

x̃ = X + x ′ = x̃− + m(t−t ′)
γ x̃−
2

= X + δ− + X + mt−t ′
γ δ−

2
= X +

(
mt−t ′

γ + 1
)δ−

2
. (38)

Inverting this last expression we see that

δ− = 2
(
mt−t ′

γ + 1
)−1

x ′ (39)

that is inserted into (37) to obtain

xR = X + 2
mt

γ(
mt−t ′

γ + 1
)x ′ (40)

and finally

X − xR = −2
mt

γ(
mt−t ′

γ + 1
)x ′. (41)

For the case of a map with one degree of freedom (corresponding to a two degrees of freedom
flux), the eigenvalues of the symplectic matrix mt

γ are exp(−λt) and exp(λt) (λ is the stability
exponent of the orbit) corresponding to the stable and unstable directions generated by the
vectors 
ξs and 
ξu, respectively. Let us define q ′ and p′ as canonical coordinates along the stable
and unstable directions, respectively, such that x ′ = (p′, q ′) = q ′ 
ξs + p′ 
ξu, with 
ξu ∧ 
ξs = 1.
Then, using (41) with the diagonal representation of the symplectic matrix, the scalar product
(X − xR)2 = (X − xR) · (X − xR) takes the form

(X − xR)2 = 1

cosh 2
(
λ t−t ′

2

) [p′2 eλ(t+t ′)ξ 2
u + q ′2 e−λ(t+t ′)ξ 2

s + 2p′q ′ 
ξu. 
ξs

]
(42)
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where ξ 2
u = 
ξu · 
ξu and ξ 2

s = 
ξs · 
ξs . It can also be easily shown that∣∣det mt
γ + 1

∣∣ 1
2 = 2 cosh

(
λt

2

)
. (43)

The center action for the orbit that is close to the fixed point (periodic orbit for the flux)
is given by

St
γ (x̃) = tSX + x ′Bt

γ x ′ + O(x ′3) (44)

where SX is the action of the fixed point for which the Maslov index αt
γ = tαγ . Let us

define the action S̃X = SX + h̄αγ in order to include the Maslov index in the action. Bt is the
symmetric matrix such that

JBt
γ = 1 − mt

γ

1 − mt
γ

(45)

with

J =
[

0 −1
1 0

]
. (46)

Thus, Bt
γ is the Cayley parameterization of mt

γ . Using the stable and unstable directions as
coordinate axes, the result is that

JBt
γ =

[
tanh(tλ/2) 0

0 −tanh(tλ/2)

]
. (47)

Inserting (47) into action (44) and putting together with (43) and (42) into expression (32) for
the values of the time that are integer multiples of τ and for the points x̃ on the surface of
section, we obtain

ρSC
X,φ(x̃) =

∞∑
n1=−∞

{
exp

[
i

(
φ +

S̃X

h̄

)
t1 − 2i

h̄
p′q ′ tanh

(
t1λ

2

)]
e−4t2

1 /T 2

2 cosh
(

t1λ
2

)
×

∞∑
n2=−∞

e−4t2
2 /T 2

exp

[
− 1

h̄ cosh 2
(
λ t1

2

)(p′2 eλt2ξ 2
u + q ′2 e−λt2ξ 2

s + 2p′q ′ 
ξu · 
ξs

)]}
,

(48)

where t1 = n1τ and t2 = n2τ with n1 and n2 integer numbers. This last expression represents
the semiclassical scar Wigner function on the surface of section that cuts transversally the
periodic orbit on the point X. Note that all the other orbits contributions in (32) were neglected.
It is important to see that (48) shows that the dependence of the scar Wigner function on the
phase space variables has two aspects, a phase oscillating term only depending on the product
p′q ′ and a damping term. The phase oscillating terms show phase coherence along the stable
and unstable directions where the damping factor is equal to one. Phase coherence also holds
where the product p′q ′ is constant, i.e. along each successive hyperbola that has the stable and
unstable manifolds as asymptotes. This implies in phase oscillations across the hyperbolae
the amplitude of the oscillations decreases with increasing λ and will be maximal for φ = E

h̄

corresponding to the Bohr-quantized orbit, while the damping term implies that away from
the asymptotes the amplitude of the phase oscillations presents a Gaussian decreasing with
increasing the distance.

This amplitude decaying is not present in the Spectral Wigner function that has strong
oscillations away from the periodic orbit and its stable and unstable manifolds [14]. This fact
implies important superpositions of the hyperbolic patterns from different orbits that usually
wash out all the structure.
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In order to deal with the double infinite time summations in (48) we perform a cutoff for
the values of |t1| and |t2| greater than T, the Ehrenfest time, beyond which the time-dependent
Gaussian became negligible. Remember also the discussion according to the choice of the
function fT (t) in (1).

3. Scar Wigner functions for the cat map

Now the present theory is applied to the cat map, i.e. the linear automorphism on the 2-
torus generated by the 2 × 2 symplectic matrix M, that takes a point x− to a point x+ :
x+ = Mx−mod(1). In other words, there exists an integer two-dimensional vector m such that
x+ = Mx− − m. Equivalently, the map can also be studied in terms of the center-generating
function [24]. This is defined in terms of center points

x ≡ x+ + x−
2

(49)

and chords

ξ ≡ x+ − x− = −J
∂S(x, m)

∂x
, (50)

where

S(x, m) = xBx + x(B − J )m + 1
4 m(B + J̃ )m (51)

is the center-generating function. Here, B is a symmetric matrix (the Cayley parameterization
of M, as in (47)), while

J̃ =
[

0 1
1 0

]
. (52)

We will study here the cat map with the symplectic matrix

M =
[

2 3
1 2

]
and symmetric matrix B =

[
− 1

3 0

0 1

]
. (53)

This map is known to be chaotic (ergodic and mixing) as all its periodic orbits are hyperbolic.
The periodic points xl of integer period l are labeled by the winding numbers m, so that

xl =
(

pl

ql

)
= (Ml − 1)−1m. (54)

The first periodic points of the map are the fixed points at (0, 0) and
(

1
2 , 1

2

)
and the periodic

orbits of period 2 are
[(

0, 1
2

)
,
(

1
2 , 0

)]
,
[(

1
2 , 1

6

)
,
(

1
2 , 5

6

)]
,
[(

0, 1
6

)
,
(

1
2 , 2

6

)]
,
[(

0, 5
6

)
,
(

1
2 , 4

6

)]
and[(

0, 2
6

)
,
(
0, 4

6

)]
. The eigenvalues of M are e−λ and eλ with λ = ln(2 +

√
3) ≈ 1.317. This

is then the stability exponent for the fixed points, whereas the exponents must be doubled
for orbits of period 2. All the eigenvectors have directions 
ξs = (−√

3
2 , 1

2

)
and 
ξu = (

1, 1√
3

)
corresponding to the stable and unstable directions, respectively.

Quantum mechanics on the torus implies a finite Hilbert space of dimension N = 1
2πh̄

and that positions and momenta are defined to have discrete values in a lattice of separation 1
N

[16, 22]. The cat map was originally quantized by Hannay and Berry [22] in the coordinate
representation the propagator is

〈qk|ÛM|qj 〉 =
(

i

N

) 1
2

exp

[
i2π

N
(k2 − jk + j 2)

]
, (55)
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where the states 〈q|qj 〉 are periodic combs of Dirac delta distributions at positions q =
j/N mod(1), with j being an integer in [0, N − 1]. In the Weyl representation [16], the
quantum map has been obtained in [24] as

UM(x) = 2

|det(M + 1)| 1
2

∑
m

ei2πN[S(x,m)]

= 2

|det(M + 1)| 1
2

∑
m

ei2πN[xBx+x(B−J )m+ 1
4 m(B+J̃ )m], (56)

where the center points are represented by x = (
a
N

, b
N

)
with a and b being the integer numbers

in [0, N −1] for odd values of N [16]. There exists an alternative definition of the torus Wigner
function which also holds for even N. However, it is constructed on the quarter torus and this
compactification scrambles the hyperbolic patterns.

The fact that the symplectic matrix M has equal diagonal elements implies the time-
reversal symmetry and then the symmetric matrix B has no off-diagonal elements. This
property will be valid for all the powers of the map and, using (56), we can see that it implies
in the quantum symmetry

Ul
M(p, q) = (

Ul
M(−p, q)

)∗ = (
Ul

M(p,−q)
)∗

, (57)

for any integer value of l.
It has been shown [22] that the unitary propagator is periodic (nilpotent) in the sense that

for any value of N there is an integer k(N) such that

Ûk(N)
M = eiφ. (58)

Hence, the eigenvalues of the map lie on the k(N) possible sites:{
exp

[
i(2mπ + φ)

k(N)

]}
, 1 � m � k(N). (59)

For the cases where k(N) < N there are degeneracies and the spectrum does not behave as
expected for chaotic quantum systems. In spite of the peculiarities in this map, a very weak
nonlinear perturbation of cat maps restores the universal behavior of nondegenerate chaotic
quantum systems spectra [25]. Eckhardt [26] has argued that typically the eigenfunctions of
cat maps are random.

The scar Wigner function on the torus depends on the definition of the periodic coherent
state [27, 28] with 〈p〉 = P and 〈q〉 = Q. In accordance to (13)

〈X|qk〉 =
∞∑

j=−∞
exp

{
2πN

[
− (j + Q − k/N)2

2ω2
− iP

(
j +

Q

2
− k/N

)]}
. (60)

The scar function is then defined on the torus as

|ϕX,φ〉 =
∞∑

t=−∞
eiφt e−(4t/T )2

Ut
M|X〉. (61)

Remember that for maps, time only takes discrete values, then the time integral in (2) has been
in this case replaced by a summation. Also, as we have already discussed, for our numerical
computations we truncate the sum for times |t | > T/2 where the Gaussian damping term
became negligible. Now, the scar Wigner function on the torus is

ρX,φ(x) = Tr[R̂x |ϕX,φ〉〈ϕX,φ|] (62)

where the trace is now taken on torus Hilbert space and R̂x are the periodic reflection operators
on the torus [16]. In order to construct the semiclassical scar Wigner functions on the torus
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we have to periodize the construction. This is done merely using the recipe [16] that for any
operator its Weyl representation on the torus A(x) is obtained from its analog in the plane
A(x) by

A(x) =
∞∑

j=−∞

∞∑
k=−∞

(−1)2ja+2kb+jkNA

(
x +

(k, j)

2

)
. (63)

This leads to the property

A
(

x +
(k, j)

2

)
= (−1)2ja+2kb+jkN A(x), (64)

for the torus Weyl symbol. In the case of the scar Wigner function, the phase factor in (64)
leads to four images of the scar pattern, supported by the integer lattice. The images centered
on (P,Q),

(
P + 1

2 ,Q
)

and
(
P,Q + 1

2

)
are all identical, whereas

(
P + 1

2 ,Q + 1
2

)
centers a

pattern which is the negative of the other ones. This fact has already been studied for the
Wigner function of coherent states [14].

In figure 2, we compare the exact scar Wigner function for a cat map with N = 223, a value
for which the quantum map has no degeneracies, in (a) with the semiclassical approximation,
correspondingly for h̄ = 1/(2πN), in (d). The case studied corresponds to the periodic
point at (1/2, 1/2) whose action is SX = 0.75 for a value of φ that does not Bohr-quantize
the orbit. Figures 2(b) and (c) show, respectively, the horizontal and vertical sections in the
neighborhood of the periodic point of the objects plotted in figures 2(a) and (d).

It can easily be observed that the four images of the scar patterns are present both for the
exact and semiclassical scar Wigner functions. Also, the semiclassical approximation properly
describes the overall behavior of the exact dynamical system with detail of oscillations of the
order 0.02.

Although deviations are present, particularly seen in figure 2(b), they are due to the
contribution of longer orbits to (48). In particular, the period-2 orbit on the points

[(
0, 2

6

)(
0, 4

6

)]
has (1/2, 1/2) as center point. These periodic orbits only have contributions for the adequate
values of t1, in the specified case t1 must be odd for the period-2 orbit to contribute.

4. Discussion

As was already observed for the case of the spectral Wigner function, the imprint of the
classical hyperbolicity on the scar Wigner function is so clear that it can be detected even for
quasi-energies that do not correspond to a Bohr-quantized periodic orbit.

The general features exhibited by our calculations should also be discernible for nonlinear
systems as, indeed, our deduction was not restricted to cat maps. Though the theory in section 2
is only local, we conjecture that distorted hyperbolae asymptotic to curved stable and unstable
manifolds will bear fringes reaching out from the periodic point. In the case of a chaotic
Hamiltonian for two degrees of freedom, this pattern should emerge in two-dimensional
sections cutting the periodic orbit at a point. This plane should be transverse to that of the
orbit and in the energy shell.

The cutoff with time in our definition of the scar Wigner function affords equal treatment
to all periodic orbits in the denominator of (48). The reason why the main contribution comes
from only one hyperbolic orbit is that for an orbit of period n to have coherent contribution in
(48) t − t ′ must have specific values that differ in n. That is, the number of significant terms
in (48) is divided by n. Also, T increases only logarithmically with h̄ so that the semiclassical
limit λ → nλ implies in a cutoff for longer orbits.
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(a) (b)

(c) (d )

Figure 2. Scar Wigner function with N = 223 constructed on the fixed point (0, 0) for a non-
Bohr-quantized value of φ. The black colors represent large positive values of the Wigner function
while large negative values are represented in white. (a) Exact result for the cat map. (b) We
compare sections of the exact and the semiclassical scar Wigner functions near the periodic point
for q = 0.5 (horizontal section). The solid line represents the section of the exact scar Wigner
function, while by the dashed lines we show the semiclassical approximation. (c) Same as (b) but
for p = 0.5 (vertical section). (d) Semiclassical approximation ρX,φ

SC(x).
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Appendix A. Reflection operators in phase space

Among the several representations of quantum mechanics, the Weyl–Wigner representation
is the one that performs a decomposition of the operators that act on the Hilbert space on



11070 A M F Rivas

the basis formed by the set of unitary reflection operators. In this appendix, we review the
definition and some properties of these reflection operators.

First of all we construct the family of unitary operators

T̂q = exp(−ih̄−1q · p̂), T̂p = exp(ih̄−1p · q̂), (A.1)

and following [15] we define the operator corresponding to a general translation in phase space
by ξ = (p, q) as

T̂ξ ≡ exp

(
i

h̄
ξ ∧ x̂

)
≡ exp

[
i

h̄
(p · q̂ − q · p̂)

]
= T̂pT̂q exp

[
− i

2h̄
p · q

]
= T̂q T̂p exp

[
i

2h̄
p · q

]
, (A.2)

where naturally x̂ = (p̂, q̂). In other words, the order of T̂p and T̂q affects only the overall
phase of the product, allowing us to define the translation as above. T̂ξ is also known as a
Heisenberg operator. Acting on the Hilbert space we have

T̂ξ |qa〉 = exp

[
i

h̄
p
(
qa +

q

2

)]
|qa + q〉 (A.3)

and

T̂ξ |pa〉 = e− i
h̄
q(pa+ p

2 )|pa + p〉. (A.4)

We, hence, verify their interpretation as translation operators in phase space. The group
property is maintained within a phase factor:

T̂ξ2 T̂ξ1 = T̂ξ1+ξ2 exp

[−i

2h̄
ξ1 ∧ ξ2

]
= T̂ξ1+ξ2 exp

[−i

h̄
D3(ξ1, ξ2)

]
, (A.5)

where D3 is the symplectic area of the triangle determined by two of its sides. Evidently, the
inverse of the unitary operator T̂ −1

ξ = T̂
†
ξ = T̂−ξ .

The set of operators corresponding to phase space reflections R̂x about the points
x = (p, q) in phase space is formally defined in [15] as the Fourier transform of the translation
(or Heisenberg) operators

R̂x ≡ (4πh̄)−L

∫
dξ exp

[
i

h̄
x ∧ ξ

]
T̂ξ . (A.6)

Their action on the coordinate and momentum bases are

R̂x |qa〉 = e2i(q−qa)p/h̄|2q − qa〉 (A.7)

R̂x |pa〉 = e2i(p−pa)q/h̄|2p − pa〉, (A.8)

displaying the interpretation of these operators as reflections in phase space. Also, using
the coordinate representation of the coherent state (13) and the action of reflection on the
coordinate basis (A.7), we can see that the action of the reflection operator R̂x on a coherent
state |X〉 is the x reflected coherent state

R̂x |X〉 = exp
( i

h̄
X ∧ x

)
|2x − X〉. (A.9)

This family of operators has the property that they are a decomposition of the unity
(completeness relation):

1̂ = 1

2πh̄

∫
dxR̂x, (A.10)



Semiclassical scar functions in phase space 11071

and also they are orthogonal in the sense that

Tr
[
R̂x1R̂x2

] = 2πh̄δ(x2 − x1). (A.11)

Hence, an operator Â can be decomposed in terms of reflection operators as follows:

Â = 1

2πh̄

∫
dxAW(x)R̂x. (A.12)

With this decomposition, the operator Â is mapped on a function AW(x) lying in phase space,
the so-called Weyl–Wigner symbol of the operator. Using (A.11) it is easy to show that AW(x)

can be obtained by performing the following trace operation:

AW(x) = Tr[R̂xÂ].

Of course, as it is shown in [15], the Weyl symbol also takes the usual expression in terms of
matrix elements of Â in coordinate representation

AW(x) =
∫ 〈

q − Q

2
|Â|q +

Q

2

〉
exp

(
− i

h̄
pQ

)
dQ.

It was also shown in [15] that reflection and translation operators have the following
composition properties:

R̂xT̂ξ = R̂x−ξ/2 exp

[
− i

h̄
x ∧ ξ

]
, (A.13)

T̂ξ R̂x = R̂x+ξ/2 exp

[
− i

h̄
x ∧ ξ

]
, (A.14)

R̂x1R̂x2 = T̂2(x2−x1) exp

[
i

h̄
2x1 ∧ x2

]
(A.15)

so that

R̂xR̂x = 1̂. (A.16)

Now using (A.15) and (A.14) we can compose three reflections so that

R̂x2R̂xR̂x1 = exp

[
i

h̄
	3(x2, x1, x)

]
R̂x2−x+x1 (A.17)

where 	3(x2, x1, x) = 2(x2 − x) ∧ (x1 − x) is the area of the oriented triangle whose sides
are centered on the points x2, x1 and x, respectively (see figure 1).
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